117 research outputs found

    Colloquium : disclination loops, point defects, and all that in nematic liquid crystals

    Get PDF
    The homotopy theory of topological defects is a powerful tool for organizing and unifying many ideas across a broad range of physical systems. Recently, experimental progress was made in controlling and measuring colloidal inclusions in liquid crystalline phases. The topological structure of these systems is quite rich but, at the same time, subtle. Motivated by experiment and the power of topological reasoning, the classification of defects in uniaxial nematic liquid crystals was reviewed and expounded upon. Particular attention was paid to the ambiguities that arise in these systems, which have no counterpart in the much-storied XY model or the Heisenberg ferromagnet

    Loss of a globally unique kelp forest from Oman

    Get PDF
    Kelp forests are declining in many regions globally with climatic perturbations causing shifts to alternate communities and significant ecological and economic loss. Range edge populations are often at most risk and are often only sustained through localised areas of upwelling or on deeper reefs. Here we document the loss of kelp forests (Ecklonia radiata) from the Sultanate of Oman, the only confirmed northern hemisphere population of this species. Contemporary surveys failed to find any kelp in its only known historical northern hemisphere location, Sadah on the Dhofar coast. Genetic analyses of historical herbarium specimens from Oman confirmed the species to be E. radiata and revealed the lost population contained a common CO1 haplotype found across South Africa, Australia and New Zealand suggesting it once established through rapid colonisation throughout its range. However, the Omani population also contained a haplotype that is found nowhere else in the extant southern hemisphere distribution of E. radiata. The loss of the Oman population could be due to significant increases in the Arabian Sea temperature over the past 40 years punctuated by suppression of coastal upwelling. Climate-mediated warming is threatening the persistence of temperate species and precipitating loss of unique genetic diversity at lower latitudes.info:eu-repo/semantics/publishedVersio

    Prezygotic Barriers to Hybridization in Marine Broadcast Spawners: Reproductive Timing and Mating System Variation

    Get PDF
    Sympatric assemblages of congeners with incomplete reproductive barriers offer the opportunity to study the roles that ecological and non-ecological factors play in reproductive isolation. While interspecific asynchrony in gamete release and gametic incompatibility are known prezygotic barriers to hybridization, the role of mating system variation has been emphasized in plants. Reproductive isolation between the sibling brown algal species Fucus spiralis, Fucus guiryi (selfing hermaphrodite) and Fucus vesiculosus (dioecious) was studied because they form hybrids in parapatry in the rocky intertidal zone, maintain species integrity over a broad geographic range, and have contrasting mating systems. We compared reproductive synchrony (spawning overlap) between the three species at several temporal scales (yearly/seasonal, semilunar/tidal, and hourly during single tides). Interspecific patterns of egg release were coincident at seasonal (single peak in spring to early summer) to semilunar timescales. Synthesis of available data indicated that spawning is controlled by semidiurnal tidal and daily light-dark cues, and not directly by semilunar cycles. Importantly, interspecific shifts in timing detected at the hourly scale during single tides were consistent with a partial ecological prezygotic hybridization barrier. The species displayed patterns of gamete release consistent with a power law distribution, indicating a high degree of reproductive synchrony, while the hypothesis of weaker selective constraints for synchrony in selfing versus outcrossing species was supported by observed spawning in hermaphrodites over a broader range of tidal phase than in outcrossers. Synchronous gamete release is critical to the success of external fertilization, while high-energy intertidal environments may offer only limited windows of reproductive opportunity. Within these windows, however, subtle variations in reproductive timing have evolved with the potential to form ecological barriers to hybridization

    ROCK1 and LIMK2 Interact in Spread but Not Blebbing Cancer Cells

    Get PDF
    Cancer cells migrating within a 3D microenvironment are able to adopt either a mesenchymal or amoeboid mode of migration. Amoeboid migration is characterised by membrane blebbing that is dependent on the Rho effectors, ROCK1/2. We identify LIMK2 as the preferred substrate for ROCK1 but find that LIMK2 did not induce membrane blebbing, suggesting that a LIMK2 pathway is not involved in amoeboid-mode migration. In support of this hypothesis, novel FRET data demonstrate a direct interaction between ROCK1 and LIMK2 in polarised but not blebbing cells. Our results point to a specific role for the ROCK1:LIMK2 pathway in mesenchymal-mode migration
    corecore